Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Infect Dis ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38213276

ABSTRACT

Definitive data demonstrating the utility of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) for treating immunocompromised patients remains elusive. To better understand the mechanism of action of CCP, we studied viral replication and disease progression in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected hamsters treated with CCP obtained from recovered COVID-19 patients that were also vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. Vaxplas transiently enhanced disease severity and lung pathology in hamsters treated near peak viral replication due to immune complex and activated complement deposition in pulmonary endothelium, and recruitment of M1 proinflammatory macrophages into the lung parenchyma. However, aside from one report, transient enhanced disease has not been reported in CCP recipient patients, and the transient enhanced disease in Vaxplas hamsters may have been due to mismatched species IgG-FcR interactions, infusion timing, or other experimental factors. Despite transient disease enhancement, Vaxplas dramatically reduced virus replication in lungs and improved infection outcome in SARS-CoV-2-infected hamsters.

2.
Tissue Barriers ; 12(1): 2186672, 2024 01 02.
Article in English | MEDLINE | ID: mdl-36899465

ABSTRACT

The injectable progestin depot-medroxyprogesterone acetate (DMPA) is a popular contraceptive choice in sub-Saharan Africa although mouse models indicate it weakens genital epithelial integrity and barrier function and increases susceptibility to genital infection. The intravaginal ring NuvaRing® is another contraceptive option that like DMPA suppresses hypothalamic pituitary ovarian (HPO) axis function with local release of progestin (etonogestrel) and estrogen (ethinyl estradiol). As we previously reported that treating mice with DMPA and estrogen averts the loss of genital epithelial integrity and barrier function induced by DMPA alone, in the current investigation we compared genital levels of the cell-cell adhesion molecule desmoglein-1 (DSG1) and genital epithelial permeability in rhesus macaques (RM) treated with DMPA or a NuvaRing®re-sized for RM (N-IVR). While these studies demonstrated comparable inhibition of the HPO axis with DMPA or N-IVR, DMPA induced significantly lower genital DSG1 levels and greater tissue permeability to intravaginally administered low molecular mass molecules. By identifying greater compromise of genital epithelial integrity and barrier function in RM administered DMPA vs. N-IVR, our results add to the growing body of evidence that indicate DMPA weakens a fundamental mechanism of anti-pathogen host defense in the female genital tract.


Subject(s)
Contraceptive Agents, Female , Desogestrel , Medroxyprogesterone Acetate , Humans , Female , Animals , Mice , Medroxyprogesterone Acetate/adverse effects , Contraceptive Agents, Female/adverse effects , Progestins , Macaca mulatta , Ethinyl Estradiol/pharmacology , Estrogens/pharmacology , Genitalia
3.
Cell Tissue Bank ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37995051

ABSTRACT

Risk for transmission of SARS-CoV-2 through allogeneic human tissue transplantation is unknown. To further evaluate the risk of virus transmission, tissues were obtained from deceased donors who had tested positive for SARS-CoV-2 RNA via nasopharyngeal swab. This study evaluated an array of human tissues recovered for transplantation, including bone, tendon, skin, fascia lata, vascular tissues, and heart valves. Tissue samples and plasma or serum samples, if available, were tested for viral RNA (vRNA) using a real time PCR system for the presence of virus RNA. All samples were tested in quadruplicate for both subgenomic (sgRNA) and genomic (gRNA) RNA encoding the SARS-CoV-2 nucleocapsid gene. Amplification of a cellular housekeeping gene served as the positive control for every sample. A total of 47 tissue samples from 17 donors were tested for SARS-CoV-2 RNA. Four donors had plasma or serum available for paired testing. SARS-CoV-2 RNA was not detected from any tissue or plasma/serum sample tested. Based on these findings, risk of transmission through the transplantation of tissue types studied from SARS-CoV-2 infected donors is likely to be low.

4.
bioRxiv ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37662344

ABSTRACT

The utility of COVID-19 convalescent plasma (CCP) for treatment of immunocompromised patients who are not able to mount a protective antibody response against SARS-CoV-2 and who have contraindications or adverse effects from currently available antivirals remains unclear. To better understand the mechanism of protection in CCP, we studied viral replication and disease progression in SARS-CoV-2 infected hamsters treated with CCP plasma obtained from recovered COVID patients that had also been vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. We found that Vaxplas dramatically reduced virus replication in the lungs and improved infection outcome in SARS-CoV-2 infected hamsters. However, we also found that Vaxplas transiently enhanced disease severity and lung pathology in treated animals likely due to the deposition of immune complexes, activation of complement and recruitment of increased numbers of macrophages with an M1 proinflammatory phenotype into the lung parenchyma.

5.
bioRxiv ; 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36747683

ABSTRACT

The injectable progestin depot-medroxyprogesterone acetate (DMPA) is a popular contraceptive choice in sub-Saharan Africa although mouse models indicate it weakens genital epithelial integrity and barrier function and increases susceptibility to genital infection. The intravaginal ring NuvaRing® is another contraceptive option that like DMPA suppresses hypothalamic pituitary ovarian (HPO) axis function with local release of progestin (etonogestrel) and estrogen (ethinyl estradiol). As we previously reported that treating mice with DMPA and estrogen averts the loss of genital epithelial integrity and barrier function induced by DMPA alone, in the current investigation we compared genital levels of the cell-cell adhesion molecule desmoglein-1 (DSG1) and genital epithelial permeability in rhesus macaques (RM) treated with DMPA or a NuvaRing®re-sized for RM (N-IVR). While these studies demonstrated comparable inhibition of the HPO axis with DMPA or N-IVR, DMPA induced significantly lower genital DSG1 levels and greater tissue permeability to intravaginally administered low molecular mass molecules. By identifying greater compromise of genital epithelial integrity and barrier function in RM administered DMPA vs. N-IVR, our results add to the growing body of evidence that indicate DMPA weakens a fundamental mechanism of anti-pathogen host defense in the female genital tract.

6.
PLoS Pathog ; 18(2): e1009914, 2022 02.
Article in English | MEDLINE | ID: mdl-35143587

ABSTRACT

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel SARS-CoV-2 variant designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and it was shown to have enhanced infectivity in vitro and decreased antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both variants exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most marked body weight loss among the 3 variants. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three variants. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the oropharynx but not in the lungs. In multi-virus in-vivo competition experiments, we found that B.1. (614G), epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the nasal cavity, B.1. (614G), gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) and WA-1 variants in hamsters. These results demonstrate enhanced virulence and high relative oropharyngeal replication of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) variant.


Subject(s)
COVID-19/virology , SARS-CoV-2/pathogenicity , Animals , COVID-19/pathology , Disease Models, Animal , Female , Humans , Lung/pathology , Lung/virology , Male , Mesocricetus , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence
7.
Microbiol Spectr ; 9(3): e0139721, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34817208

ABSTRACT

Human clinical studies investigating use of convalescent plasma (CP) for treatment of coronavirus disease 2019 (COVID-19) have produced conflicting results. Outcomes in these studies may vary at least partly due to different timing of CP administration relative to symptom onset. The mechanisms of action of CP include neutralizing antibodies but may extend beyond virus neutralization to include normalization of blood clotting and dampening of inflammation. Unresolved questions include the minimum therapeutic titer in the CP units or CP recipient as well as the optimal timing of administration. Here, we show that treatment of macaques with CP within 24 h of infection does not reduce viral shedding in nasal or lung secretions compared to controls and does not detectably improve any clinical endpoint. We also demonstrate that CP administration does not impact viral sequence diversity in vivo, although the selection of a viral sequence variant in both macaques receiving normal human plasma was suggestive of immune pressure. Our results suggest that CP, administered to medium titers, has limited efficacy, even when given very early after infection. Our findings also contribute information important for the continued development of the nonhuman primate model of COVID-19. These results should inform interpretation of clinical studies of CP in addition to providing insights useful for developing other passive immunotherapies and vaccine strategies. IMPORTANCE Antiviral treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain very limited. One treatment that was explored beginning early in the pandemic (and that is likely to be tested early in future pandemics) is plasma collected from people who have recovered from coronavirus disease 2019 (COVID-19), known as convalescent plasma (CP). We tested if CP reduces viral shedding or disease in a nonhuman primate model. Our results demonstrate that administration of CP 1 day after SARS-CoV-2 infection had no significant impact on viral loads, clinical disease, or sequence diversity, although treatment with normal human plasma resulted in selection of a specific viral variant. Our results demonstrate that passive immunization with CP, even during early infection, provided no significant benefit in a nonhuman primate model of SARS-CoV-2 infection.


Subject(s)
COVID-19/therapy , Immunization, Passive/methods , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antiviral Agents/therapeutic use , COVID-19/immunology , Disease Models, Animal , Humans , Immunity , Lung/pathology , Macaca mulatta , Pandemics , Spike Glycoprotein, Coronavirus/immunology , Viral Load , Virus Replication
8.
bioRxiv ; 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34462750

ABSTRACT

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel variant of concern (VOC) designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and shown to enhance infectivity in vitro and decrease antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both strains exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most body weight loss among all 3 lineages. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three strains. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the upper respiratory tract (URT) but not in the lungs. In multi-virus in-vivo competition experiments, we found that epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the URT gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) variants in hamsters. These results demonstrate enhanced virulence and high relative fitness of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) strain. AUTHOR SUMMARY: In the last 12 months new variants of SARS-CoV-2 have arisen in the UK, South Africa, Brazil, India, and California. New SARS-CoV-2 variants will continue to emerge for the foreseeable future in the human population and the potential for these new variants to produce severe disease and evade vaccines needs to be understood. In this study, we used the hamster model to determine the epsilon (B.1.427/429) SARS-CoV-2 strains that emerged in California in late 2020 cause more severe disease and infected hamsters have higher viral loads in the upper respiratory tract compared to the prior B.1 (614G) strain. These findings are consistent with human clinical data and help explain the emergence and rapid spread of this strain in early 2021.

9.
Biol Reprod ; 103(2): 310-317, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32542371

ABSTRACT

There is concern that using depot-medroxyprogesterone acetate (DMPA) for pregnancy prevention heightens HIV susceptibility. While no clinical data establishes causal link between HIV acquisition and use of this injectable progestin, prior work from our laboratory showed that DMPA comparably lowers genital levels of the cell-cell adhesion molecule desmoglein-1 (DSG1) and weakens genital epithelial barrier function in female mice and women. We likewise saw DMPA increase mouse susceptibility to multiple genital pathogens including HIV. Herein, we sought to confirm and extend these findings by comparing genital epithelial barrier function in untreated rhesus macaques (RM) vs. RM treated with DMPA or DMPA and estrogen (E). Compared to controls, genital tissue from RM with pharmacologically relevant serum levels of medroxyprogesterone acetate displayed significantly lower DSG1 levels and greater permeability to low molecular mass molecules. Conversely, DMPA-mediated effects on genital epithelial integrity and function were obviated in RM administered DMPA and E. These data corroborate the diminished genital epithelial barrier function observed in women initiating DMPA and identify RM as a useful preclinical model for defining effects of exogenous sex steroids on genital pathogen susceptibility. As treatment with E averted DMPA-mediated loss of genital epithelial barrier function, our results also imply that contraceptives releasing progestin and E may be less likely to promote transmission of HIV and other sexually transmitted pathogens than progestin-only compounds.


Subject(s)
Desmoglein 1/metabolism , Estradiol/analogs & derivatives , Medroxyprogesterone Acetate/administration & dosage , Vagina/drug effects , Animals , Estradiol/administration & dosage , Estradiol/blood , Female , Macaca mulatta , Medroxyprogesterone Acetate/blood , Progesterone/blood , Vagina/metabolism
10.
Nat Commun ; 10(1): 4344, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554802

ABSTRACT

Innate immune responses to Zika virus (ZIKV) are dampened in the lower female reproductive tract (LFRT) compared to other tissues, but the mechanism that underlies this vulnerability is poorly understood. Using tissues from uninfected and vaginally ZIKV-infected macaques and mice, we show that low basal expression of RNA-sensing pattern recognition receptors (PRRs), or their co-receptors, in the LFRT contributes to high viral replication in this tissue. In the LFRT, ZIKV sensing provides limited protection against viral replication, and the sensors are also minimally induced after vaginal infection. While IFNα/ß receptor signaling offers minimal protection in the LFRT, it is required to prevent dissemination of ZIKV to other tissues, including the upper FRT. Our findings support a role for RNA-sensing PRRs in the dampened innate immunity against ZIKV in the LFRT compared to other tissues and underlie potential implications for systemic dissemination upon heterosexual transmission of ZIKV in women.


Subject(s)
Genitalia, Female/immunology , Immunity, Innate/immunology , RNA, Viral/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Female , Gene Expression Regulation, Viral , Genitalia, Female/metabolism , Genitalia, Female/virology , Humans , Immunity, Innate/genetics , Macaca mulatta , Mice, Inbred C57BL , Mice, Knockout , RNA, Viral/genetics , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/immunology , Receptor, Interferon alpha-beta/metabolism , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/immunology , Receptors, Pattern Recognition/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/immunology , Toll-Like Receptor 3/metabolism , Vagina/immunology , Vagina/metabolism , Vagina/virology , Virus Replication/genetics , Virus Replication/immunology , Zika Virus/genetics , Zika Virus/physiology , Zika Virus Infection/genetics , Zika Virus Infection/virology
11.
J Virol ; 93(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30333177

ABSTRACT

Herpes simplex virus 2 (HSV-2) is a common sexually transmitted infection with a highly variable clinical course. Many infections quickly become subclinical, with episodes of spontaneous virus reactivation. To study host-HSV-2 interactions, an animal model of subclinical HSV-2 infection is needed. In an effort to develop a relevant model, rhesus macaques (RM) were inoculated intravaginally with two or three HSV-2 strains (186, 333, and/or G) at a total dose of 1 × 107 PFU of HSV-2 per animal. Infectious HSV-2 and HSV-2 DNA were consistently shed in vaginal swabs for the first 7 to 14 days after each inoculation. Proteins associated with wound healing, innate immunity, and inflammation were significantly increased in cervical secretions immediately after HSV-2 inoculation. There was histologic evidence of acute herpesvirus pathology, including acantholysis in the squamous epithelium and ballooning degeneration of and intranuclear inclusion bodies in epithelial cells, with HSV antigen in mucosal epithelial cells and keratinocytes. Further, an intense inflammatory infiltrate was found in the cervix and vulva. Evidence of latent infection and reactivation was demonstrated by the detection of spontaneous HSV-2 shedding post-acute inoculation (102 to 103 DNA copies/swab) in 80% of RM. Further, HSV-2 DNA was detected in ganglia in most necropsied animals. HSV-2-specifc T-cell responses were detected in all animals, although antibodies to HSV-2 were detected in only 30% of the animals. Thus, HSV-2 infection of RM recapitulates many of the key features of subclinical HSV-2 infection in women but seems to be more limited, as virus shedding was undetectable more than 40 days after the last virus inoculation.IMPORTANCE Herpes simplex virus 2 (HSV-2) infects nearly 500 million persons globally, with an estimated 21 million incident cases each year, making it one of the most common sexually transmitted infections (STIs). HSV-2 is associated with increased human immunodeficiency virus type 1 (HIV-1) acquisition, and this risk does not decline with the use of antiherpes drugs. As initial acquisition of both HIV and HSV-2 infections is subclinical, study of the initial molecular interactions of the two agents requires an animal model. We found that HSV-2 can infect RM after vaginal inoculation, establish latency in the nervous system, and spontaneously reactivate; these features mimic some of the key features of HSV-2 infection in women. RM may provide an animal model to develop strategies to prevent HSV-2 acquisition and reactivation.


Subject(s)
Acantholysis/virology , Herpes Simplex/virology , Herpesvirus 2, Human/pathogenicity , Vagina/virology , Acantholysis/immunology , Acantholysis/veterinary , Animals , Disease Models, Animal , Female , Herpes Simplex/immunology , Herpes Simplex/veterinary , Herpesvirus 2, Human/immunology , Humans , Macaca mulatta , T-Lymphocytes/immunology , Virus Latency , Virus Shedding
12.
J Infect Dis ; 218(1): 124-132, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29701813

ABSTRACT

Background: New methods to increase measles and rubella (MR) vaccination coverage are needed to achieve global and regional MR elimination goals. Methods: Here, we developed microneedle (MN) patches designed to administer MR vaccine by minimally trained personnel, leave no biohazardous sharps waste, remove the need for vaccine reconstitution, and provide thermostability outside the cold chain. This study evaluated the immunogenicity of MN patches delivering MR vaccine to infant rhesus macaques. Results: Protective titers of measles neutralizing antibodies (>120 mIU/mL) were detected in 100% of macaques in the MN group and 75% of macaques in the subcutaneous (SC) injection group. Rubella neutralizing antibody titers were >10 IU/mL for all groups. All macaques in the MN group were protected from challenge with wild-type measles virus, whereas 75% were protected in the SC group. However, vaccination by the MN or SC route was unable to generate protective immune responses to measles in infant macaques pretreated with measles immunoglobulin to simulate maternal antibody. Conclusions: These results show, for the first time, that MR vaccine delivered by MN patch generated protective titers of neutralizing antibodies to both measles and rubella in infant rhesus macaques and afforded complete protection from measles virus challenge.


Subject(s)
Drug Delivery Systems/instrumentation , Measles Vaccine/administration & dosage , Measles Vaccine/immunology , Measles/prevention & control , Rubella Vaccine/administration & dosage , Rubella Vaccine/immunology , Rubella/prevention & control , Administration, Cutaneous , Animals , Animals, Newborn , Antibodies, Neutralizing/blood , Female , Macaca mulatta , Male
13.
J Infect Dis ; 218(6): 856-867, 2018 08 14.
Article in English | MEDLINE | ID: mdl-29701840

ABSTRACT

Background: Influenza A virus (IAV) vaccines offer little protection from mismatched viruses with antigenically distant hemagglutinin (HA) glycoproteins. We sought to determine if a cationic lipid/DNA complex (CLDC) adjuvant could induce heterosubtypic protection if added to a whole inactivated IAV vaccine (WIV). Methods: Adult rhesus macaques (RMs) were vaccinated and at 2 weeks boosted with either an H1N1-WIV or an H3N2-WIV, with and without CLDC adjuvant. Four weeks postboost, animals were challenged with an H1N1 IAV matched to the H1N1-WIV vaccine. Results: After challenge, viral RNA (vRNA) levels in the trachea of control RMs and RMs vaccinated with the unadjuvanted H1 or H3 WIV vaccines were similar. However, vRNA levels in the trachea of both the H1-WIV/CLDC- and the H3-WIV/CLDC-vaccinated RMs (P < 0.01 and P < 0.05, respectively) were significantly lower than in unvaccinated control RMs. Heterosubtypic protection in H3-WIV/CLDC RMs was associated with significantly higher levels of nucleoprotein (NP) and matrix-1-specific immunoglobulin G antibodies (P < 0.05) and NP-specific nonneutralizing antibody-dependent natural killer cell activation (P < 0.01) compared with unprotected H3-WIV RMs. Conclusions: Addition of the CLDC adjuvant to a simple WIV elicited immunity to conserved virus structural proteins in RMs that correlate with protection from uncontrolled virus replication after heterosubtypic influenza virus challenge.


Subject(s)
DNA/administration & dosage , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/physiology , Influenza Vaccines/administration & dosage , Lipids/administration & dosage , Orthomyxoviridae Infections/prevention & control , Vaccines, Attenuated/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , Disease Models, Animal , Female , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/pharmacology , Liposomes/administration & dosage , Macaca mulatta/immunology , Macaca mulatta/virology , Male , Nucleocapsid Proteins , Orthomyxoviridae Infections/immunology , Plasmids/genetics , RNA-Binding Proteins/immunology , Trachea/virology , Vaccines, Attenuated/pharmacology , Viral Core Proteins/immunology , Virus Replication/drug effects
14.
PLoS Pathog ; 13(7): e1006537, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28746373

ABSTRACT

Zika virus (ZIKV) is a mosquito-transmitted virus that can cause severe defects in an infected fetus. ZIKV is also transmitted by sexual contact, although the relative importance of sexual transmission is unclear. To better understand the role of sexual transmission in ZIKV pathogenesis, a nonhuman primate (NHP) model of vaginal transmission was developed. ZIKV was readily transmitted to mature cycling female rhesus macaque (RM) by vaginal inoculation with 104-106 plaque-forming units (PFU). However, there was variability in susceptibility between the individual RM with 1->8 vaginal inoculations required to establish infection. After treatment with Depoprovera, a widely used contraceptive progestin, two RM that initially resisted 8 vaginal ZIKV inoculations became infected after one ZIKV inoculation. Thus, Depoprovera seemed to enhance susceptibility to vaginal ZIKV transmission. Unexpectedly, the kinetics of virus replication and dissemination after intravaginal ZIKV inoculation were markedly different from RM infected with ZIKV by subcutaneous (SQ) virus inoculation. Several groups have reported that after SQ ZIKV inoculation vRNA is rapidly detected in blood plasma with vRNA less common in urine and saliva and only rarely detected in female reproductive tract (FRT) secretions. In contrast, in vaginally inoculated RM, plasma vRNA is delayed for several days and ZIKV replication in, and vRNA shedding from, the FRT was found in all 6 animals. Further, after intravaginal transmission ZIKV RNA shedding from FRT secretions was detected before or simultaneously with plasma vRNA, and persisted for at least as long. Thus, ZIKV replication in the FRT was independent of, and often preceded virus replication in the tissues contributing to plasma vRNA. These results support the conclusion that ZIKV preferentially replicates in the FRT after vaginal transmission, but not after SQ transmission, and raise the possibility that there is enhanced fetal infection and pathology after vaginal ZIKV transmission compared to a mosquito transmitted ZIKV.


Subject(s)
Vagina/virology , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Disease Models, Animal , Female , Genitalia, Female/virology , Macaca mulatta , Virus Replication , Virus Shedding , Zika Virus/genetics
15.
PLoS Pathog ; 13(5): e1006395, 2017 May.
Article in English | MEDLINE | ID: mdl-28498847

ABSTRACT

Myeloid derived suppressor cells (MDSCs), which suppress anti-tumor or anti-viral immune responses, are expanded in the peripheral blood and tissues of patients/animals with cancer or viral infectious diseases. We here show that in chronic SIV infection of Indian rhesus macaques, the frequency of MDSCs in the bone marrow (BM) was paradoxically and unexpectedly decreased, but increased in peripheral blood. Reduction of BM MDSCs was found in both CD14+MDSC and Lin-CD15+MDSC subsets. The reduction of MDSCs correlated with high plasma viral loads and low CD4+ T cell counts, suggesting that depletion of BM MDSCs was associated with SIV/AIDS disease progression. Of note, in SHIVSF162P4-infected macaques, which naturally control viral replication within a few months of infection, the frequency of MDSCs in the bone marrow was unchanged. To investigate the mechanisms by which BM MDSCs were reduced during chronic SIV infection, we tested several hypotheses: depletion due to viral infection, alterations in MDSC trafficking, and/or poor MDSC replenishment. We found that the possible mobilization of MDSCs from BM to peripheral tissues and the slow self-replenishment of MDSCs in the BM, along with the viral infection-induced depletion, all contribute to the observed BM MDSC reduction. We first demonstrate MDSC SIV infection in vivo. Correlation between BM CD14+MDSC reduction and CD8+ T cell activation in tissues is consistent with decreased immune suppression by MDSCs. Thus, depletion of BM MDSCs may contribute to the pathologic immune activation during chronic SIV infection and by extension HIV infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Macaca mulatta , Myeloid-Derived Suppressor Cells/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Bone Marrow/immunology , Bone Marrow/virology , Disease Models, Animal , Female , Humans , Lymphocyte Activation , Male , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Viral Load , Virus Replication
16.
J Virol ; 90(8): 4093-4104, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26865706

ABSTRACT

UNLABELLED: The human immunodeficiency virus (HIV) is primarily transmitted by heterosexual contact, and approximately equal numbers of men and women worldwide are infected with the virus. Understanding the biology of HIV acquisition and dissemination in men exposed to the virus by insertive penile intercourse is likely to help with the rational design of vaccines that can limit or prevent HIV transmission. To characterize the target cells and dissemination pathways involved in establishing systemic simian immunodeficiency virus (SIV) infection, we necropsied male rhesus macaques at 1, 3, 7, and 14 days after penile SIV inoculation and quantified the levels of unspliced SIV RNA and spliced SIV RNA in tissue lysates and the number of SIV RNA-positive cells in tissue sections. We found that penile (glans, foreskin, coronal sulcus) T cells and, to a lesser extent, macrophages and dendritic cells are primary targets of infection and that SIV rapidly reaches the regional lymph nodes. At 7 days after inoculation, SIV had disseminated to the blood, systemic lymph nodes, and mucosal lymphoid tissues. Further, at 7 days postinoculation (p.i.), spliced SIV RNA levels were the highest in the genital lymph nodes, indicating that this is the site where the infection is initially amplified. By 14 days p.i., spliced SIV RNA levels were high in all tissues, but they were the highest in the gastrointestinal tract, indicating that the primary site of virus replication had shifted from the genital lymph nodes to the gut. The stepwise pattern of virus replication and dissemination described here suggests that vaccine-elicited immune responses in the genital lymph nodes could help prevent infection after penile SIV challenge. IMPORTANCE: To be the most effective, vaccines should produce antiviral immune responses in the anatomic sites of virus replication. Thus, understanding the path taken by HIV from the mucosal surfaces, which are the site of virus exposure, to the deeper tissues where the virus replicates will provide insight into where AIDS vaccines should produce immunity to be the most effective. In this study, we determined that, by day 7 after penile inoculation, SIV has moved first to the inguinal lymph nodes and replicates to high levels. Although the virus is widely disseminated to other tissues by day 7, replication is largely limited to the inguinal lymph nodes. The step-by-step movement of SIV from penile mucosal surfaces to the draining lymph nodes may allow an HIV vaccine that produces immunity in these lymph nodes to block HIV from establishing an infection in an exposed person.


Subject(s)
Lymph Nodes/virology , Penis/virology , RNA, Viral/analysis , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Animals , Disease Models, Animal , Gastrointestinal Tract/virology , Immunophenotyping , Macaca mulatta , Male , Mucous Membrane/virology , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Immunodeficiency Virus/immunology , Time Factors
17.
PLoS One ; 9(9): e106004, 2014.
Article in English | MEDLINE | ID: mdl-25203111

ABSTRACT

Ad5 is a common cause of respiratory disease and an occasional cause of gastroenteritis and conjunctivitis, and seroconversion before adolescence is common in humans. To gain some insight into how Ad5 infection affects the immune system of rhesus macaques (RM) 18 RM were infected with a host-range mutant Ad5 (Ad5hr) by 3 mucosal inoculations. There was a delay of 2 to 6 weeks after the first inoculation before plasmacytoid dendritic cell (pDC) frequency and function increased in peripheral blood. Primary Ad5hr infection suppressed IFN-γ mRNA expression, but the second Ad5hr exposure induced a rapid increase in IFN-gamma mRNA in peripheral blood mononuclear cells (PBMC). Primary Ad5hr infection suppressed CCL20, TNF and IL-1 mRNA expression in PBMC, and subsequent virus exposures further dampened expression of these pro-inflammatory cytokines. Primary, but not secondary, Ad5hr inoculation increased the frequency of CXCR3+ CD4+ T cells in blood, while secondary, but not primary, Ad5hr infection transiently increased the frequencies of Ki67+, HLADR+ and CD95+/CCR5+ CD4+ T cells in blood. Ad5hr infection induced polyfunctional CD4 and CD8+ T cells specific for the Ad5 hexon protein in all of the animals. Thus, infection with Ad5hr induced a complex pattern of innate and adaptive immunity in RM that included transient systemic CD4+ T cell activation and suppressed innate immunity on re-exposure to the virus. The complex effects of adenovirus infection on the immune system may help to explain the unexpected results of testing Ad5 vector expressing HIV antigens in Ad5 seropositive people.


Subject(s)
Adenoviridae Infections/immunology , Adenoviridae/genetics , Adenoviridae/physiology , CD4-Positive T-Lymphocytes/immunology , Immunity, Innate , Lymphocyte Activation , Adenoviridae Infections/blood , Adenoviridae Infections/prevention & control , Animals , Antibodies, Neutralizing/blood , CD4-Positive T-Lymphocytes/cytology , Cell Count , Chemokines/genetics , Gene Expression Regulation/immunology , Macaca mulatta , RNA, Messenger/genetics , RNA, Messenger/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Vaccination , Virus Shedding
18.
PLoS One ; 8(10): e76367, 2013.
Article in English | MEDLINE | ID: mdl-24146859

ABSTRACT

HIV is shed in semen but the anatomic site of virus entry into the genital secretions is unknown. We determined viral RNA (vRNA) levels and the envelope gene sequence in the SIVmac 251 viral populations in the genital tract and semen of 5 adult male rhesus monkeys (Macaca mulatta) that were infected after experimental penile SIV infection. Paired blood and semen samples were collected from 1-9 weeks after infection and the monkeys were necropsied eleven weeks after infection. The axillary lymph nodes, testes, epididymis, prostate, and seminal vesicles were collected and vRNA levels and single-genome analysis of the SIVmac251 env variants was performed. At the time of semen collection, blood vRNA levels were between 3.09 and 7.85 log10 vRNA copies/ml plasma. SIV RNA was found in the axillary lymph nodes of all five monkeys and in 3 of 5 monkeys, all tissues examined were vRNA positive. In these 3 monkeys, vRNA levels (log10 SIVgag copies/ug of total tissue RNA) in the axillary lymph node (6.48 ± 0.50) were significantly higher than in the genital tract tissues: testis (3.67 ± 2.16; p<0.05), epididymis (3.08 ± 1.19; p<0.0001), prostate (3.36 ± 1.30; p<0.01), and seminal vesicle (2.67 ± 1.50; p<0.0001). Comparison of the SIVmac251 env viral populations in blood plasma, systemic lymph node, and genital tract tissues was performed in two of the macaques. Visual inspection of the Neighbor-Joining phylograms revealed that in both animals, all the sequences were generally distributed evenly among all tissue compartments. Importantly, viral populations in the genital tissues were not distinct from those in the systemic tissues. Our findings demonstrate striking similarity in the viral populations in the blood and male genital tract tissues within 3 months of penile SIV transmission.


Subject(s)
Gene Products, env/genetics , Macaca mulatta/virology , Penis/virology , RNA, Viral/metabolism , Semen/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Animals , Base Sequence , Macaca mulatta/blood , Male , Molecular Sequence Data , Organ Specificity , Phylogeny , RNA, Viral/blood , Simian Acquired Immunodeficiency Syndrome/blood
19.
J Virol ; 86(17): 9188-200, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22696662

ABSTRACT

Immunization with attenuated lentiviruses is the only reliable method of protecting rhesus macaques (RM) from vaginal challenge with pathogenic simian immunodeficiency virus (SIV). CD8(+) lymphocyte depletion prior to SIVmac239 vaginal challenge demonstrated that a modest, Gag-specific CD8(+) T cell response induced by immunization with simian-human immunodeficiency virus 89.6 (SHIV89.6) protects RM. Although CD8(+) T cells are required for protection, there is no anamnestic expansion of SIV-specific CD8(+) T cells in any tissues except the vagina after challenge. Further, SHIV immunization increased the number of viral target cells in the vagina and cervix, suggesting that the ratio of target cells to antiviral CD8(+) T cells was not a determinant of protection. We hypothesized that persistent replication of the attenuated vaccine virus modulates inflammatory responses and limits T cell activation and expansion by inducing immunoregulatory T cell populations. We found that attenuated SHIV infection decreased the number of circulating plasmacytoid dendritic cells, suppressed T cell activation, decreased mRNA levels of proinflammatory mediators, and increased mRNA levels of immunoregulatory molecules. Three days after SIV vaginal challenge, SHIV-immunized RM had significantly more T regulatory cells in the vagina than the unimmunized RM. By day 14 postchallenge, immune activation and inflammation were characteristic of unimmunized RM but were minimal in SHIV-immunized RM. Thus, a modest vaccine-induced CD8(+) T cell response in the context of immunoregulatory suppression of T cell activation may protect against vaginal HIV transmission.


Subject(s)
HIV-1/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Vagina/virology , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , AIDS Vaccines/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Female , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/genetics , Humans , Immunity, Innate , Immunization , Macaca mulatta , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vagina/immunology
20.
J Virol ; 86(4): 2239-50, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22156519

ABSTRACT

The Step Trial showed that the MRKAd5 HIV-1 subtype B Gag/Pol/Nef vaccine did not protect men from HIV infection or reduce setpoint plasma viral RNA (vRNA) levels but, unexpectedly, it did modestly enhance susceptibility to HIV infection in adenovirus type 5 (Ad5)-seropositive, uncircumcised men. As part of the process to understand the results of the Step Trial, we designed a study to determine whether rhesus macaques chronically infected with a host-range mutant Ad5 (Ad5hr) and then immunized with a replication defective Ad5 SIVmac239 Gag/Pol/Nef vaccine were more resistant or susceptible to SIV infection than unimmunized rhesus macaques challenged with a series of escalating dose penile exposures to SIVmac 251. The Ad5 SIV vaccine induced CD8(+) T cell responses in 70% of the monkeys, which is similar to the proportion of humans that responded to the vaccine in the Step Trial. However, the vaccine did not protect vaccinated animals from penile SIV challenge. At the lowest SIV exposure dose (10(3) 50% tissue culture infective doses), 2 of 9 Ad5-seropositive animals immunized with the Ad5 SIV vaccine became infected compared to 0 of 34 animals infected in the other animal groups (naive animals, Ad5-seropositive animals immunized with the empty Ad5 vector, Ad5-seronegative animals immunized with the Ad5 SIV vaccine, and Ad5-seronegative animals immunized with the empty Ad5 vector). Penile exposure to more concentrated virus inocula produced similar rates of infection in all animal groups. Although setpoint viral loads were unaffected in Step vaccinees, the Ad5 SIV-immunized animals had significantly lower acute-phase plasma vRNA levels compared to unimmunized animals. Thus, the results of the nonhuman primate (NHP) study described here recapitulate the lack of protection against HIV acquisition seen in the Step Trial and suggest a greater risk of infection in the Ad5-seropositive animals immunized with the Ad5 SIV vaccine. Further studies are necessary to confirm the enhancement of virus acquisition and to discern associated mechanisms.


Subject(s)
AIDS Vaccines/immunology , Gene Products, env/immunology , Gene Products, gag/immunology , Gene Products, nef/immunology , HIV Infections/prevention & control , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Adenoviruses, Human/genetics , Adenoviruses, Human/physiology , Animals , Antibodies, Viral/immunology , Defective Viruses/genetics , Defective Viruses/physiology , Disease Models, Animal , Gene Products, env/administration & dosage , Gene Products, env/genetics , Gene Products, gag/administration & dosage , Gene Products, gag/genetics , Gene Products, nef/administration & dosage , Gene Products, nef/genetics , Genetic Vectors/genetics , Genetic Vectors/metabolism , HIV/genetics , HIV/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , Humans , Immunization , Macaca mulatta , Male , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/genetics , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...